
Using the Preferences plugin to save plugin preferences across
Sibelius sessions

Bob Zawalich January 29, 2011

The Preferences plugin (Plugins > Other > Preferences) was written by Hans-
Christoph Wirth to allow us to save plugin settings across Sibelius sessions. It
grew out of a mechanism we had been using that wrote settings to either Sibelius
scores or text files, and has the additional benefit of providing an editable user
interface for the data stored in its database.

Its use is described in the ManuScript document, but it is not the most obvious
description I have ever used, and there are a few things that can catch you out.

When I need to save preferences, I usually start with a template plugin that sets
up the access to preferences and provides me with stub methods. This document
will describe how this was done, and will this provide at least an example of a
plugin that works.

There are a large number of plugins on the download page that use this code, and
include examples of varying complexity, and these can be examined as well.

The Preferences code in the plugin Minimum Plugin
Preferences

I try to isolate the calls to the Preferences code to the Run() method. Typically,
what needs to be done is to initialize the database, get the saved preferences if
any, run a dialog, save the changes made in the dialog, and close the Preferences
database.

The example Run() method looks like this:

if (Sibelius.ProgramVersion < zg_Sib6Version)

{

 MyMessageBox(_msgVersionTooEarly);

 return False;

}

// update zg_VersionNumber when changes are made.

_Version = BuildVersionText(zg_VersionNumber);

if (Sibelius.ScoreCount = 0)

{

 Sibelius.MessageBox(_ScoreError);

 return False;

}

score = Sibelius.ActiveScore;

selection = score.Selection;

if (score.StaffCount = 0)

{

 MyMessageBox(_ScoreError);

 return False;

}

fProcessEntireScore = False;

if (IsEmptySelection(score, True) = True)

{

 fContinue = MyYesNoMessageBox(_msgSelectWholeScore); //True means

Yes, continue and process score

 if (fContinue = False)

 {

 return False; // they said no, so stop the plugin

 }

 fProcessEntireScore = True;

}

//OpenPreferences();

//GetPreferences();

//ok = DoDialog();

//if (ok = False)

//{

 //CleanupPreferences();

// return False;

//}

//SavePreferences();

score.Redraw = False;

selection.StoreCurrentSelection();

if (fProcessEntireScore = True)

{

 selection.SelectPassage(1, score.SystemStaff.BarCount, 1,

score.StaffCount); // select all staff items

}

numColored = ProcessSelection(score, selection);

//CleanupPreferences();

selection.RestoreSelection(); // now the original selection is

restored.

score.Redraw = True;

There is some generic initial setup, then a block of code that is commented out in
the example – the first thing I do is uncomment it:

//OpenPreferences();

//GetPreferences();

//ok = DoDialog();

//if (ok = False)

//{

 //CleanupPreferences();

// return False;

//}

(I generally leave the code commented out until I know what I will need to save
and restore, and that is not usually true until I am into the plugin for a while).

OpenPreferences opens the data base, and in my code, it sets a global variable
g_valPreferencesOpen for the other Preferences routines. I use the global
because I often call SavePreferences out of a dialog handler routine, to which
parameters cannot be passed. The code looks like this:

// set g_valPreferencesOpen if ok, -1 otherwise

strName = "" & _PluginMenuName;

g_valPreferencesOpen = Preferences.Open(strName,

zg_PreferencesVersionNumber);

return g_valPreferencesOpen;

You open the database using an identifier, and _PluginMenuName is the easiest
choice. The cast to strName suggests that there were problems passing a global
variable to Open, but I do not remember the details of any problems. But this
scheme definitely works.

zg_PreferencesVersionNumber is another global, and it is the version of
Preferences. This has not changed in a long time, (zg_PreferencesVersionNumber
"020000")so it would probably not hurt to use the hard-coded value inline, but I
like to use a global so I can change it if needed without messing with the actual
code.

Open returns

* -2 other error

* -1 library does not support requested feature set

* 0 no common preferences database found

* 1 no preferences found for current plug-in

* 2 preferences for current plug-in loaded

and anything greater or equal to 0 is useable. I check the value in
GetPreferences(), and if nothing is available, I use default values rather than
cancelling the plugin.

GetPreferences() is where it gets a bit complex, though once you are past the
initial setup, not much code changes from plugin to plugin. Let's skip it for the
moment, though, and handle the others, which are generally simpler.

CleanupPreferences() is simple. The code just looks like:

if (g_valPreferencesOpen >= 0)

{

 Preferences.Close();

}

g_valPreferencesOpen = -1; // reset

Once you have opened the database, be sure that you close it via
ClosePreferences, even if you exit on an error. So in the example, if the user
cancels the dialog you still need to close Preferences:

ok = DoDialog();

if (ok = False)

{

 CleanupPreferences();

 return False;

}

SavePreferences() can be complex if you are saving multiple groups of data in
different scopes, but commonly you are just saving strings or numbers or arrays.
If you save Booleans, you should convert the values to a 0 or a 1 before you save. I
always save the version number of the plugin as part of the data so I can check
when I get the preferences if the version of the plugin is >= the version in which
the data was stored.

// store these in the central preferences file using Hans-Christoph"s

Preferences library

if (g_valPreferencesOpen < 0) // g_valPreferencesOpen is return value

from ptrPreferences.Open. > = 0 means options can be written

{

 return False;

}

Preferences.SetKey("Version", 0 + zg_VersionNumber);

xxx // force crash if used without changing

Preferences.SetKey("MoveInVoice", "" & g_strVoice);

return True;

In my sample code I add xxx to make a syntax error in case I forgot to update this
routine. If I run it, it will crash as a reminder. The line that calls SetKey for
MoveInVoice is just an example line…

Note that if I am saving off a global variable like g_strVoice, I concatenate "" to
get its value rather than its address. Similarly, for a number, add 0 (as in the
version number). I use a routine called TrueFalseAsNumber() to convert a
boolean to a 0 or 1:

Preferences.SetKey('fStrings', TrueFalseAsNumber(dlg_fStrings));

You can store arrays easily as well.

Preferences.SetArray('RGBList', g_arrRGBValues, -1);

For an example of a relatively simple plugin that stores several keys and an array
see Color Enharmonic Pitches.SavePreferences() at
http://www.sibelius.com/download/plugins/index.html?plugin=263.

For a more complex plugin that saves multiple sets of data in different scopes, see
Add Fingering To Notes.DoSaveCustom() at
http://www.sibelius.com/download/plugins/index.html?plugin=318

GetPreferences()

There is a fair bit of code here, but the part that has to change is pretty small. For
the most part you just need to Get the same set of variables you Set in
SavePreferences().

Here is the sample code:

// get preferences from database if available, otherwise use global

defaults

if (g_valPreferencesOpen < 2) // g_valPreferencesOpen is return value

from ptrPreferences.Open. 2 = Preferences found

{

 // trace("GetOptions - no preferences file found, use defaults -

open returns " & g_valPreferencesOpen);

 return -1;

}

ver = Preferences.GetKey("Version");

//trace("GetOptions ver, zg_VersionNumber,

zg_VersionSavedPreferencesMin = " & ver & ", " & zg_VersionNumber & ",

" & zg_VersionSavedPreferencesMin);

if (ver = Preferences.VOID) // something wrong, just clear without

asking

{

http://www.sibelius.com/download/plugins/index.html?plugin=263
http://www.sibelius.com/download/plugins/index.html?plugin=318

 Preferences.RemoveAllIds(); // removes all preferences for

current plugin.

 return -1;

}

if (ver > zg_VersionNumber)

{

 MyMessageBox(_DefaultsFormatError);

 return -1;

}

//dlg_strLineStyle = "" & GetPrefKeyNoVoid("strLineStyle", ("" &

dlg_strLineStyle));

//dlg_fAddLine = 0 + GetPrefKeyNoVoid("fAddLine",

(TrueFalseAsNumber(dlg_fAddLine)));

return 1;

The code is assuming that if it cannot find any Preferences data, the global
variables have been already set up with appropriate defaults. So do that in the
caller if you want values other that what is stored in the global variables
themselves (though for me, that is the usual situation).

The lines that change every time are the commented out calls to
GetPrefKeyNoVoid(), and there should be 1 entry for each value saved.
GetPrefKeyNoVoid() calls GetKey, and if that call returned the special void value,
it uses the value that was previously in the global. Look at GetPrefKeyNoVoid()
for details.

If you use multiple scopes, this routine will be more complex. You need to declare
local variables at the start, and be careful only to declare them when the database
is first created, or the variables tend to disappear. Here is an example from Add
Fingering To Notes, showing a variant of the starting code above. See the plugin
itself to see a full implementation of multi-scope variables.

In my experience you do not need them very often, and it is a bit messy, though
very powerful, when you do need them.

if (g_valPreferencesOpen < 2) // g_valPreferencesOpen is return value

from ptrPreferences.Open. 2 = Preferences found

{

 if ((g_valPreferencesOpen = 0) or (g_valPreferencesOpen = 1))

 {

 // only need to declare these as local once when the DB is

first created

 Preferences.DeclareIdAsLocal('TextSet');

 Preferences.DeclareIdAsLocal('strXOffsetC');

 Preferences.DeclareIdAsLocal('strYOffsetC');

 Preferences.DeclareIdAsLocal('strStyleFingeringC');

 Preferences.DeclareIdAsLocal('fPositionAtNoteheadC');

 Preferences.DeclareIdAsLocal('fDisableMagneticLayoutC');

 }

 // trace('GetOptions - no preferences file found, use defaults -

open returns ' & g_valPreferencesOpen);

 return -1;

}

Checking what was written

Plugins >Other >Preferences has a pretty cool editing interface that will show you
what was written, and let you edit the data in the data file (which is
SibeliusPluginPreferences.dat, stored in the user Sibelius 6 folder, above the
Plugins folder). Here is an example of what I see when I run it.

I hope this has been useful. You should find the Minimum Plugin Preferences
plugin in the same zip file where you found this file.

